'Bis(triphenylphosphine)palladium:' Its Generation, Characterization, and Reactions

Ei-ichi Negishi,* Tamotsu Takahashi, and Kazunari Akiyoshi

Department of Chemistry, Purdue University, W. Lafayette, Indiana 47907, U.S.A.

Pd⁰–PPh₃ complexes obtained by reduction of $X_2Pd(PPh_3)_2$, where X is Cl, Br, or I, with various reducing agents, *e.g.*, RLi and Buⁱ₂AlH, are neither free Pd(PPh₃)₂ nor its polymer, those derived from RLi being consistent only with LiXPd(PPh₃)₂, Li₂X₂Pd(PPh₃)₂, and aggregates thereof.

Palladium–PPh₃ complexes, such as $Pd(PPh_3)_4$ and $Cl_2Pd(PPh_3)_2$, have been shown to be effective precatalysts for cross coupling.¹ A 14-electron species, 'Pd(PPh_3)_2,' has been implicated as the actual catalyst undergoing oxidative addition with organic halides.¹ Although some di-co-ordinate Pd complexes of the Pd(PR_3)_2 type containing bulky ligands, such as PBut₃, have been fully characterized,² no characterization of 'Pd(PPh_3)_2' by spectroscopic means has been reported.

Treatment of $Cl_2Pd(PPh_3)_2$ with 2 equiv. of an organolithium reagent, *e.g.*, MeLi, PhLi, or Bu^tCH=CHLi, in tetrahydrofuran (THF) under nitrogen gives a common product (1) showing only one ³¹P n.m.r. signal at 23.0— 23.3(s) p.p.m. (relative to 85% H₃PO₄) along with a homocoupled product, *e.g.*, MeMe, PhPh, or (Bu^tCH=CH)₂, respectively, in \geq 95% yields. The same species (1) can also be generated by the reaction of $Cl_2Pd(PPh_3)_2$ with 2 equiv. of BuⁿLi. The organic product in this case, however, is a mixture of n-octane, n-butane, and but-1-ene. Clearly, (1) is independent of the organic group in the organolithium reagent. A solution containing (1) has yielded the following additional spectral data: i.r. (THF) 3075 (m), 3058 (m), 1596 (m), 1479 (m), 1434 (s), 744 (s), and 696 (s) cm⁻¹; ¹H n.m.r. (THF), 6.9—7.5 (m, 30 H).

The reactions of (1) with PPh₃ (1 or 2 equiv.), PhI, and maleic anhydride cleanly and quantitatively produce Pd(PPh₃)₃³ (³¹P n.m.r. 20.5 p.p.m.) or Pd(PPh₃)₄⁴ (15.8 p.p.m.), PhPd(PPh₃)₂I⁵ (23.8 p.p.m.), and (Ph₃P)₂-Pd(C₄H₂O₃)⁶ (27.5 p.p.m.), respectively. These results indi-

cate that (1) consists entirely or partially of the $Pd(PPh_3)_2$ unit. The ³¹P n.m.r. spectrum of (1) does not detectably change for at least several hours at ambient temperature, indicating that (1) is stable under these conditions. However, all attempts to isolate (1) led to its decomposition, as judged by ³¹P n.m.r. spectroscopy. Consequently, no elemental analytical and molecular weight information is available at present.

Since THF, N₂, and LiCl, formed as a byproduct, are the only compounds in the reaction mixture other than (1) and the innocuous hydrocarbon byproducts, possible roles of these compounds in (1) were examined. To this end, the reaction of $Cl_2Pd(PPh_3)_2$ with 2 equiv. of BuⁿLi was carried out both in toluene under N2 and in THF under argon. The Pd-containing product in either case shows the same ³¹P n.m.r. singlet in the 23.0—23.3 p.p.m. range. Thus, neither THF nor N_2 appreciably interacts with 'Pd(PPh₃)₂.' However, LiX (X = Cl, Br, or I) must interact significantly with 'Pd(PPh₃)₂,' since the use of $Br_2Pd(PPh_3)_2^7$ and $I_2Pd(PPh_3)_2^7$ in place of $Cl_2Pd(PPh_3)_2$ shifts the ³¹P n.m.r. signal to 22.0 and 15.8 p.p.m., respectively. In each case, addition of 1 equiv. of PhI induces clean formation of PhPd(PPh₃)₂I (23.8 p.p.m.). We conclude that the Pd-containing product in the reaction of $X_2Pd(PPh_3)_2$ with 2 equiv. of RLi is neither free Pd(PPh₃)₂ nor its polymer. The only structures that are consistent with the available data are $LiXPd(PPh_3)_2$, $Li_2X_2Pd(PPh_3)_2$, and aggregates thereof. Clearly, the exact structure of 'Pd(PPh_3)_2' depends on the reagents used to generate it. For example, treatment of Cl₂Pd(PPh₃)₂ with 2 equiv. of Buⁱ₂AlH in THF cleanly

produces a Pd-PPh₃ complex showing only the ³¹P n.m.r. signal at 21.8 p.p.m., which acts as 'Pd(PPh₃)₂.' Typically, its treatment with 1 equiv. of PhI quantitatively produces PhPd(PPh₃)₂I (23.8 p.p.m.). Finally, several samples of 'Pd(PPh₃)₂' generated from different precursors have been shown to exhibit catalytic activities in cross coupling indistinguishable from one another.

We thank N.S.F. and Engelhard Industries for support.

Received, 12th May 1986; Com. 630

References

- E. Negishi, Acc. Chem. Res., 1982, 15, 340.
 S. Otsuka, T. Yoshida, M. Matsumoto, and K. Nakatsu, J. Am. Chem. Soc., 1976, 98, 5850.
- 3 B. E. Mann and A. Musco, J. Chem. Soc., Dalton Trans., 1975, 1673.
- 4 L. Malatesta and M. Angoletta, J. Chem. Soc., 1957, 1186.
- 5 P. Fitton and E. A. Rick, J. Organomet. Chem., 1971, 28, 287.
- 6 S. Takahashi and N. Hagihara, Nippon Kagaku Zasshi, 1967, 88, 1306.
- 7 H. C. Clark and K. R. Dixon, J. Am. Chem. Soc., 1969, 91, 596.